News Daily


Men's Weekly

Australia

  • Written by The Conversation
Crystals can’t bend – or can they? New research sheds light on elusive ‘flexible crystals’

We are all familiar with elastic materials – just think of a rubber band which can return to its original shape after being stretched.

Humans have used elastic materials for millennia. These days, they’re in everything from optical fibres to aeroplanes and buildings. But until now, scientists haven’t been able to pinpoint exactly how these materials return to their original shape. What happens at the level of their molecules?

Published today in the journal Nature Materials, our new study uses the properties of flexible crystals to understand how interactions between molecules give rise to elasticity. This provides new insight into the model of elasticity developed by English polymath Robert Hooke more than 300 years ago.

Our findings will allow us to develop new ways of designing components for complicated aerospace and building materials or electronic devices.

The mystery of elasticity

A material is elastic if it can return to its original structure after being deformed. For example, a rubber band goes back to its original shape after it’s been stretched. However, it will snap if pulled too hard. This is known as a “non-elastic change” – it means the material can no longer return to its original shape.

The most useful elastic materials can undergo large changes in their structures and still return to their original shape. There are many engineering uses for this. As one example, bridges are designed to move elastically in high winds to prevent them from falling down.

All materials are at least a little bit elastic: they can restore themselves after very small changes in structure. If you shake a piece of paper, it will still lie flat. But if you fold it, the crease is permanent – a non-elastic behaviour that is essential for origami.

Prior to our research, there were two main approaches to understanding elasticity.

In the 17th century, Robert Hooke first described how elastic materials work. He discovered that the force needed to stretch an elastic material is proportional to the distance it is stretched, and described this mathematically.

However, knowing this doesn’t provide much insight for chemists and physicists like ourselves, who work to develop new materials with better elastic properties.

More recently, computers have been used to calculate the elastic properties of a material using its structure and the basic laws of physics. But while it’s nice for a computer to understand the problem, it doesn’t necessarily make it easier for humans to grasp. This is where our work on flexible crystals comes in.

A thin, flexible crystal can be bent reversibly and repeatedly – showing its elastic properties. UQ/QUT

How can a crystal be flexible?

Crystals, which are normally hard and brittle, are made up of a repeating pattern of atoms or molecules. Because the atoms or molecules are stacked neatly in place, it is hard to move them.

This is why diamond – a crystal of carbon atoms – is hard, while coal, also mostly made of carbon but not a crystal, is soft and crumbly.

The structure of a diamond, showing connections between the carbon atoms (blue spheres). Pieter Kuiper/Wikimedia Commons

In the flexible crystals we have developed, there are weak interactions between the molecules. These crystals are made of a combination of simple organic molecules and metal ions.

Interactions between them allow the crystals to be bent so much, they can be tied in a knot without the crystal breaking.

Our new approach allows humans to understand how the subtle interactions between molecules in crystals give rise to elasticity.

A flexible crystal in the shape of a thin strand is tied in a loose knot.

We first used X-ray diffraction, a technique for determining the positions of atoms and molecules in crystals, at the Australian Synchrotron. This allowed us to understand how the arrangement of molecules in our flexible crystal changes when it’s bent.

We then used a computer to model the interactions between pairs of molecules. Our results showed these interactions could be used to calculate elasticity just as accurately as theoretical models of the entire crystal.

So, what makes our crystal highly elastic? Our results show that none of the interactions between atoms are “happy” with the structure of the crystal when it is bent. Some would like it to move one way, others in the opposite direction. They have to compromise.

This means the molecules and atoms don’t strongly resist to changes, making the crystal highly elastic despite its molecular structure which is typical of a regular, inflexible crystal.

We could not have learned this with either of the traditional approaches for analysing elasticity.

A single crystal cantilever prepared with a steel ball approximately 55 times the mass of the crystal. The ball rises back higher than the neutral position against gravity when the force holding it is released. UQ/QUT

We were also able to calculate how much energy is stored within a crystal when it is bent, and found it was enough for the crystal to lift a mass 30 times its own weight one metre in the air. This is similar to shooting an arrow with a bow. When you draw the bow, you store elastic energy. Upon the release of the arrow, that elastic energy is transformed into kinetic energy – movement.

Our flexible crystals are not yet robust enough to be used in the construction of bridges or skyscrapers.

But the new understanding our study brings to elasticity could lead to new ways of preparing smart devices, wearable electronics, or even components for spacecraft.

Read more https://theconversation.com/crystals-cant-bend-or-can-they-new-research-sheds-light-on-elusive-flexible-crystals-248141

How Home Removalists Save Time, Money, and Energy During Your Move

Moving to a new home is an exciting chapter in life, but the process of getting there can be overwhelming. From packing and organizing to transportation and unpacking, relocation involves a long list of tasks that can consume both your... Read more

Fulfilment Australia: Streamlining ECommerce Operations for Business Growth

As eCommerce continues to thrive, efficient order fulfilment has become one of the most critical components of customer satisfaction and business success. Companies across the nation are turning to professional fulfilment Australia providers to manage inventory, packaging, and shipping operations... Read more

Evaporative Cooling Cleaning Melbourne: Keeping Your System Fresh, Efficient, and Healthy

As Melbourne’s summers grow hotter, many homes rely on evaporative cooling systems to stay comfortable. While these systems are energy-efficient and environmentally friendly, they require regular maintenance to perform at their best. Professional Evaporative Cooling Cleaning Melbourne services are essential... Read more

4 Benefits of Exploring Australia in an Off Road Caravan

Australia’s vast landscapes offer a kind of freedom that can only be fully experienced on the open road. For travellers seeking caravans for sale, choosing one built for adventure can transform any journey into a memorable one. This article will... Read more

The Importance of Professional eCommerce Web Design for Online Success

The online shopping industry has grown at a rapid pace, and with it, customer expectations have evolved. Today, having a basic website is not enough to attract and retain customers. Businesses must invest in professional eCommerce web design that not only... Read more

Modern Mud Room Ideas: Stylish Function Meets Everyday Practicality

If you’ve been thinking about upgrading your entryway, exploring modern mud room ideas is a great place to start. A mud room isn’t just a transitional space anymore—it’s an opportunity to add storage, organisation, and style to your home. Whether... Read more